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Abstract

Alcohol and substance use disorders are heterogeneous conditions with limited effec-

tive treatment options. While there have been prior attempts to classify addiction

subtypes, they have not been translated into clinical practice. In an effort to better

understand heterogeneity in psychiatric disorders, the National Institute for Mental

Health Research Domain Criteria (RDoC) has challenged scientists to think beyond

diagnostic symptoms and to consider the underlying features of psychopathology

from a neuroscience-based framework. The field of addiction has grappled with this

approach by considering several key constructs with the potential to capture RDoC

domains. This critical review will focus on the efforts to apply translational models of

addiction phenomenology in human clinical samples, including their relative strengths

andweaknesses. Opportunities for forward and reverse translation are also discussed.

Deep behavioral phenotyping using neuroscience-informed batteries shows promise

for a better understanding of the clinical neuroscience of addiction and advancing

precisionmedicine for alcohol and substance use disorders.
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INTRODUCTION

Substance use disorder (SUD) is a medical condition that is char-

acterized by impaired control over substance use despite adverse

consequences in psychosocial domains. In the Diagnostic and Statis-

tical Manual of Mental Disorders (DSM-5), SUDs are diagnosed by a

patient’s self-reported feelings and experiences and a clinician’s under-

standing of psychiatric phenomenology or behavioral observations.

These subjective approaches can lead to diagnostic inconsistencies

across patients and clinicians. Additionally, diverse phenomena are

captured by an SUD diagnosis. SUD requires any combination of at

least two of the 11 diagnostic criteria. This means that studies on

SUD (e.g., genome-wideassociation studies) often involvepatientswith

different clinical presentations of SUD. The phenomenological hetero-

geneity that characterizes the DSM means that a diagnostic category

likely encompasses a large number of biologically distinct entities.

SUD heterogeneity has also impacted treatment development. In

the case of alcohol use disorder (AUD), there are currently four Food

and Drug Administration (FDA)-approved medications to treat AUD:

disulfiram, acamprosate, oral naltrexone, and injectable naltrexone.

These medications have only modest efficacy, and given the hetero-

geneity of AUD, no one medication will work for every single patient

suffering from this disorder. The heterogeneity of SUDandotherDSM-

5 disorders may be a key reason for the withdrawal of pharmaceutical

companies from drug development for mental disorders. That is, if the

mechanism of action of a given compound is relevant only to about half

of the patients for a potential indication (i.e., a given diagnostic cate-

gory), itmaybeexpected that thiswill result inmany failed clinical trials

and an inconsistent pattern of clinical trial outcomes.

There have been attempts over the last few decades to target

interventions to specific SUD subgroups. One notable example is

Project MATCH, which was one of the first large-scale alcohol stud-

ies to investigate whether behavioral treatments could be targeted

using a personalized treatment approach. In that study, 10 primary

matching variables (e.g., perceptions and involvement of alcohol use,

cognitive impairment, gender, motivation, the severity of psychiatric
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symptoms, etc.) were studied as moderators of three behavioral

treatments—cognitive behavioral therapy, motivational enhancement

therapy, and 12-step facilitation.1 Although the three behavioral treat-

ments showed similar effectiveness, results generally failed to show

that a particular therapy could be matched to particular patients

to obtain better treatment outcomes. The only effective match was

between patients with low psychiatric severity and 12-step facilita-

tion,which resulted in patients havingmore abstinent days than similar

patients treatedwith cognitive-behavioral therapy. Clearly, someother

variables must explain the heterogeneous nature of AUD. Nearly,

25 years after the Project MATCH study, the science underlying per-

sonalized medicine is more sophisticated. In particular, progress is

being made in both neurobiology and pharmacogenetics, which may

facilitate the identification of biologically based AUD subtypes and the

selection of treatments to target those subtypes.2,3

Despite advances in neuroscience and genetic research during the

past two decades, there are still no genetic or other biomarkers that

reliably guide the diagnosis of SUD. This makes it difficult to link SUDs

to a specific circuit or gene, and in this context, neuroscience and

genetic findings have had a limited impact on DSM-5 diagnostic crite-

ria. The fact that neuroscience and genetics have contributed little to

the DSM-5 may be due to several reasons. For example, the DSM-5

is central to clinical practice, insurance reimbursement, determina-

tions of disability and service eligibility, among others. Thus, stability

in diagnostic categorization is vital for these purposes, and significant

changes require substantial validation. Additionally, the DSM classifi-

cation system has itself impeded progress in the areas of neuroscience

relevant to AUD.

In order to address the issue of SUD heterogeneity, there have

been calls for the field of psychiatry to move toward a transdiagnos-

tic and neuroscience-based framework to foster the development of

psychiatric nosologybasedonpathophysiology rather than clinical pre-

sentation. The Research Domain Criteria (RDoC) from the National

Institute ofMentalHealth (NIMH) is one such initiative that is intended

to advance the goal of a neuroscience-based research framework for

psychiatric diseases.4 RDoC has been influential in parsing hetero-

geneity and focusing on behavioral assays that are translatable and

biologically informative.

While the application of RDoC to addiction phenotypes has lagged

behind other mental health disorders, an Alcohol Addiction RDoC

(AARDoC) was proposed as a research framework wherein specific

functional domains can be prioritized.5 The AARDoC posits the follow-

ingmajor underlyingdomains of functioning inAUD: reward, stress and

affect regulation, incentive salience, executive function, and social pro-

cesses. While the framework was proposed in 2015 by the National

Institute on Alcohol and Alcoholism (NIAAA), only a few AARDoC

domains have received initial validation.6

As a complement to these research frameworks, the Addictions

Neuroclinical Assessment (ANA) was proposed by the NIAAA as a clin-

ical framework for the assessment of addictions.7 The ANA captures

information in three of the five AARDoC domains. In its development,

the ANA leveraged deep phenotyping with factor analytic methods to

construct core neurofunctional domains. The ANA posits three neuro-

functional domains that can be leveraged to understand heterogeneity

F IGURE 1 Neuroscience-informed constructs applied to
understand alcohol and substance use disorders. Neuroscience
constructs reviewed include: allostasis, incentive salience, reward
prediction error, reward and relief drinking phenotypes, and
goal-directed, habit, and compulsive behaviors. In the area of addiction
pharmacotherapy, there is a growing body of research that the reward
and drinking phenotypes can inform responses tomedications.

in addiction, incentive salience, negative emotionality, and executive

(dys)function.7,8 These domains have been derived across indepen-

dent alcohol-focused laboratories using a combination of clinical,

behavioral, and self-report measures that assess the aforementioned

underlying constructs.9–13 Our laboratory recently showed that the

ANA can be applied to derive neurofunctional domain in individuals

who use methamphetamine,14 providing initial empirical support that

the ANA can be applied across a range of substances.

It is possible that the ANA domains can be leveraged to advance

precision medicine for AUD using pharmacological and/or behavioral

treatments; however, consensus and support for a commonbattery are

needed prior to initiating such experimental studies.

While neuroscience has yet to inform the diagnostic framework

of addictive disorders, there are several neuroscience constructs that

showpromise in advancing pharmacotherapies for addiction (Figure 1).

In an effort to advance the translational neuroscience of addictive

disorders, this critical review will focus on the efforts to apply trans-

lational models of addiction phenomenology in human clinical samples,

including their relative strengths andweaknesses.

Neuroscience constructs applied to study alcohol and
SUDs

Allostasis

The allostatic model of addiction seeks to explain the intricate bal-

ance between positive and negative reinforcement in addiction.15–17
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This model is informed by the Opponent Process Theory, developed

by Solomon and Corbit (1974) to explain how two opposing pro-

cesses may occur simultaneously and jointly effect motivation.18 In

basic terms, it contends that over time, addiction becomes less about

positive reinforcement (the activational process, or the a-process)

and more about negative reinforcement (the counteradaptive oppo-

nent process, or the b-process).19 This theory seeks to capture the

dynamic nature of addiction neurobiology as the brain is continu-

ously adapting to large amounts of alcohol/drug use over extended

periods of time, thereby causing a shift in the allostatic set point.

Addiction allostasis is defined as the process of maintaining reward

function stability through changes in brain rewardmechanisms.17 Dur-

ing the reinforcing effects of alcohol intoxication (a-process), there is

an increase in GABAergic activity, opioid peptides, and dopamine out-

put in the ventral striatum, which represent the neural substrates of

alcohol reward. Conversely, during the counteradaptive opponent pro-

cess marked by negative affect and withdrawal, there is an increase

in corticotropin-releasing factor (CRF) activity as well as a decrease in

neuropeptideY (NPY), bothofwhicharekeyneuromodulatorsof stress

reactivity.17,20,21 These processes provide the neural basis of reward

and negative reinforcement associated with alcohol intoxication and

withdrawal, respectively. Over time, the shift in the balance from pos-

itive to negative reinforcement is thought to explain what patients

describe in their experiences with alcohol or drugs. In other words,

patients often describe using drugs/alcohol to feel “normal,” which is

consistent with the neuroadaptation in the brain reward circuitry lead-

ing to a chronic deviation of the brain reward set point proposed by the

allostatic model.15 In this context, it may be useful for clinicians and

patients alike, to recognize that from a biological standpoint, chronic

and heavy alcohol use causes individuals to drink primarily to allevi-

ate withdrawal and its associated unpleasant affective and physical

symptoms.

The neurobiological underpinnings of alcohol withdrawal include

changes in the neurochemical systems within the extended amyg-

dala, including decreases in neurotransmitter functions subserving

the acute reinforcing effects of alcohol (e.g., opioidergic, dopamin-

ergic, and GABAergic).16 An increase in alcohol self-administration

can be reliably induced in animal models using a withdrawal state,

and such models demonstrated that dopaminergic function is compro-

misedduring acutewithdrawal.22 Animalmodels have also emphasized

the role of dysregulation in the brain stress system, including CRF-

mediated processes, to changes in reward function leading to negative

reinforcement.17,20,21 Clinical research has sought to characterize

reward and relief processes in clinical samples. In a host of labora-

tory studies in which individuals receive a standard dose of alcohol,

our group found that the positive reinforcing effects of alcohol (i.e.,

stimulation and positivemood) were associated with alcohol craving in

heavy drinkers but not in individualswith alcohol dependence.23 These

findings were extended in an independent sample, and it was demon-

strated that the reinforcing effects of alcohol were salient determi-

nants of subjective craving in lagged models of subjective response

to alcohol and subsequent subjective craving across a range of light

drinkers, heavy drinkers, and drinkers with AUD.24 In a study com-

bining alcohol administration with alcohol self-administration using a

progressive ratio model, we did not observe a relationship between

AUD severity and subjective response. AUD severity was associated

with greater baseline negative mood, sedation, and craving, but it did

notmoderate the relationship between subjective response and subse-

quent self-administration. This finding did not support our prediction

based on the allostatic model that higher severity individuals would

show self-administration of alcohol-driven by negative reinforcement,

while lower severity individuals would self-administer for positive

reinforcement.25 A longitudinal study, including alcohol administration

in the laboratory, found support for the early stage phase of the allo-

static model. Heavy drinkers exhibiting heightened reward sensitivity

and stimulation in response to alcohol were more likely to progress to

AUD.26 In brief, studies of the subjective rewarding effects of alcohol

and negative affect relief have generally provided support for pre-

dictions from the allostatic model but only for the early stage of the

model. The “dark side” of addiction proposed by the model has not

been reliably supported, in large part because experimental studies

rely heavily on healthier and younger individuals with more mild AUD

presentations.27,28 The disconnect between AUD severity in exper-

imental psychopathology research samples and treatment research

samples has been identified as a crucial opportunity for more efficient

translation, whereby clinical samples ought to express the pathology

severity necessary to fully access the target constructs described in

neurobiological models.29

Translation of the allostatic model to clinical samples with AUD has

received increased attention. In the treatment domain, it has been

argued that the clinical response to naltrexone, an opioid antago-

nist, may be stronger among individuals who report more positive

reinforcement for alcohol (discussed in further detail below under

reward/relief drinking).30,31 This line of inquiry overlappedwith efforts

to identify genetic markers of susceptibility for alcohol reward and

naltrexone responsivity in the lab32,33 and in the clinic.34–36 While

this line of research did not produce the reliable effects required to

predict naltrexone response based on the reward-drinking genotype,

recent studies using self-report measures of drinking motives have

shown that the effect size for treatmentwith naltrexone is significantly

higher among individuals who report drinking for positive reinforce-

ment, compared to individuals who drink to alleviate negative feelings

or for normalization.37,38 Collectively, these findings suggest a poten-

tial convergence between neurobiologically informed phenotypes and

clinical phenotypes that can effectively improve treatment for AUD in

ameaningful fashion. Inmedication development efforts, it has become

increasingly accepted that some medications may work to attenuate

the positive reinforcing effects of alcohol (e.g., naltrexone for block-

ing positive reinforcement), while others may be effective in targeting

negative reinforcement mechanisms (e.g., gabapentin, an anticonvul-

santGABAmodulator, for alleviating protractedwithdrawal symptoms

and/or mifepristone, a glucocorticoid receptor antagonist, works on

the stress system by regulating the amygdala). Alpha-1 blockers like

prazosin and doxazosin may help to normalize these stress system

changes seen in addictive disorders.39 This framework continues to

garner support and inform precisionmedicine efforts.
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Incentive sensitization

Another prominent theory of addiction consists of the incentive sensi-

tizationmodel. Thebasic tenets of this theory argue that drugsof abuse

share the ability to alter brain organization (i.e., produce neuroadap-

tation) in the brain reward systems rendering the system sensitized

to drugs and associated stimuli.41 A key contribution of this theory

is the dissociation between two aspects of incentive sensitization,

namely, liking andwanting. Specifically, it has been nicely demonstrated

that sensitization operates primarily at the subcomponent of reward

termed incentive salience, which is marked by drug wanting.While the

neural basis of liking is primarily subserved by the endogenous opioid

system, the process of wanting has been associated with dopaminer-

gic activity in the brain’s reward circuitry.40 Sensitization is not simply

an inevitable pharmacological consequence of repeated drug use but

instead is modulated by environmental factors associated with alcohol

and drug intake.41

The treatment implications of incentive salience are multiple. From

a neurobiological standpoint, teaching patients to cope with triggers

is akin to training one’s brain to unlearn associations or at a behav-

ioral level, to inhibit a prepotent (learned) response, such as alcohol

use in the presence of a drinking buddy. While learning theory has

been influential in the development of highly effective treatments for

anxiety disorders, such as exposure-based interventions, similar suc-

cess is not seen in the case of addiction. Cue exposure treatments for

AUD have produced mixed results.42 The lack of strong empirical sup-

port for exposure-based treatments for addiction is largely explained

by the overgeneralizability of the conditioned response. To that end,

it is simply not feasible to devise exposure exercises that effectively

target all such triggers. Nevertheless, functional analysis of behavior

is commonly used to effectively identify patients’ most salient drug

use triggers. Likewise, behavioral techniques for coping with triggers,

such as avoiding, taking time-outs, and learning refusal skills, represent

important components of cognitive behavioral therapy for addiction.

What is often lacking from this effective intervention, is the concep-

tualization of triggers as learned processes that are biologically based

and may evoke the unwanted, yet learned, behavioral response of

alcohol or drug use leading to relapse.

Learning theory is particularly useful for understanding the neural

underpinnings of incentive salience in addiction. It contends that adap-

tive responses to various types of functional alteration are displayed

not only at the level of single neurons but also at the synapses between

neurons, hence, the term synaptic plasticity. This phenomenon has

been most studied in the form of long-term potentiation, which is a

process of long-lasting facilitation of neurotransmission across neu-

rons when the synapses between them are used repeatedly under

certain conditions. These processes are critical to all learning, both

adaptive and maladaptive. Recognizing that much like the rewarding

properties of alcohol and drugs that operate within the same neuro-

circuits responsible for normal reward functions in the brain, Pavlovian

(or associative) learning during the development of addiction operates

through the same signaling pathways subserving all other nonpatho-

logical forms of learning.43 In clinical terms, patients have learned to

form associations between triggers and alcohol or drug consumption

through the same biological mechanisms that allow us to associate our

favorite restaurant with food. The difference is that alcohol and drugs

of abuse result in unnatural levels of dopamine that may be driving

learning to an even greater degree than what would be expected by an

unexpected reward (reward prediction errors [RPEs] are discussed in

further detail below).

A number of neuroimaging studies have shown that the presen-

tation of alcohol or drug cues, compared to control cues, reliably

produces increases in blood flow in brain areas associated with reward

(nucleus accumbens, ventral tegmental area [VTA], and insula)44 and

affect regulation (amygdala).45 Studies have summarized the neural

circuitry reliably involved in cue-reactivity.46 It has been shown that

alcohol cues elicit robust activation of limbic and prefrontal regions,

including theventral striatum, anterior cingulate cortex, andventrome-

dial prefrontal cortex in individuals with AUD. Compared to controls,

individuals with AUD show greater activation of parietal and tempo-

ral regions, including the posterior cingulate, precuneus, and superior

temporal gyrus. Cue-elicited activation of the ventral striatum was

most frequently correlated with behavioral measures and reduced by

treatment.46,47 Importantly, while brain activation is correlated with

the subjective experience of craving, captured via self-reports, the cor-

relation is far from perfect and in some cases, not present at all.48 This

suggests that while craving is under conscious awareness, some of it

may be subcortical in nature and perhaps inaccessible to patients. That

is consistent with patient reports of being on “auto pilot” and having

little awareness of their craving levels during a lapse. The use of func-

tional magnetic resonance imaging (fMRI)-based cue reactivity holds

promise for screening AUD/SUD treatments and provides a proof-of-

mechanism for treatments thought to reduce the incentive salience

of alcohol and drugs.49 Ibudilast, a neuroimmune modulator, shows

promise as a novel pharmacotherapy for AUD/SUD. A 2-week human

laboratory study of ibudilast to reduce heavy drinking found that ibudi-

last, relative to placebo, reduced the odds of heavy drinking across

time by 45% and also attenuated alcohol cue-elicited activation in the

ventral striatum compared to placebo. Individuals who had attenuated

ventral striatal activation and took ibudilast had the fewest number of

drinks per drinking day in the week following the scan.50 Importantly,

medications development for addiction has focused on the attenua-

tion of craving and a recent meta-analysis has found that drug cues

and craving indicators play significant roles in drug use and relapse

outcomes in clinical settings.51

Reward/relief motivated behavior

One approach to classifying heterogeneity in SUD is based on the

underlying motivation for substance use, namely, primarily using sub-

stances for their rewarding effects or primarily using substances for

relief. The processes underlying these phenotypes reflect the three-

stage addiction cycle.52 Reward use is hypothesized to bemore salient

in the binge-intoxication stage, the initial stage of substance use

wherein use is motivated by a substance’s positive reinforcing effects.
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Reward substance use is linked to dopaminergic and opioidergic signal-

ing in the ventral striatum. Relief substance use is more salient in the

withdrawal, negative affect stage, wherein individuals use substances

to relieve negative emotionality. Relief substance use has been linked

to dysregulation in norepinephrine and stress-related signaling in the

extended amygdala, as well as dysfunction in glutamate and GABA

signaling more broadly. A neuroimaging study from our laboratory

aimed to examine the neural correlates of reward/relief behaviors.53

Our results indicated that relief/habit drinkers (relief and habit groups

were combined in this study due to overlap in clinical characteristics

between these groups) showed greater dorsal striatal activation to

visual alcohol cues than reward drinkers. However, cue-elicited ventral

striatal activation did not differ significantly between groups. Fur-

ther work identifying the neural correlates of reward and relief/habit

drinking presents a path toward the refinement of these neuroscience-

informed phenotypes with the ultimate goal of informing personalized

treatments for AUD.

Our laboratory and others have developed validated scales to iden-

tify reward and relief drinkers. Mann et al.37 and Roos et al.54 used

complex data reduction approaches to identify reward and relief

drinkers using items from the Inventory of Drinking Situations (IDS).

More recently, Votaw et al.55 developed a 10-item version of the

IDS, the Reward and Relief IDS, to identify four latent profiles: Low

Reward/HighRelief, LowReward/LowRelief, HighReward/HighRelief,

and High Reward/Low Relief. Our laboratory recently developed the

Reward, Relief, and Habit Drinking Scale (RRHDS), a short four-item

self-report measure that can be used to identify drinking phenotypes

in the clinic.56

There is some evidence that the reward/relief drinking phenotypes

predict medication responses to naltrexone, an opioid antagonist,

and acamprosate, a modulator of glutamatergic signaling. Several

studies have found that primary reward drinkers respond better to

naltrexone37,38,57 compared to placebo, with a notable exception.54

Roos et al.54 showed that primary relief drinkers respond better to

acamprosate than placebo, while Mann et al.37 found no medica-

tion response to acamprosate in relief drinkers. Using the brief IDS

to classify phenotypes, primary high-reward drinks responded better

to naltrexone and acamprosate versus placebo.55 To our knowledge,

reward and relief phenotypes have not been applied to medication

studies for other SUDs.

While identifying reward/relief phenotypes shows promise for pre-

cision medicine, prospective studies are needed to confirm the reward

phenotypes and naltrexone response directly. These studies are fea-

sible given that the RRHDS and the brief IDS can be used to stratify

randomization into treatment groups by reward/relief phenotypes.

While there is some evidence for the increased efficacy of naltrexone

in reward users, suvorexant is a dual orexin antagonist that has gar-

nered interest for addictive disorders.58 Denseorexin projections from

the lateral hypothalamus to the VTA provide neurobiological support

that orexins may influence responses to rewarding stimuli, including

alcohol.59 Two ongoing clinical trials will assess suvorexant’s potential

as a treatment for AUD (NCT04229095) and comorbid AUD + insom-

nia (NCT03897062). Ghrelin receptor antagonists may also serve as

a biological target for addictive disorders. In human laboratory stud-

ies, intravenous ghrelin administration has been shown to increase

the urge to drink, increase alcohol self-administration, and modulate

brain activity in regions involved in reward processing.60,61 In regard

to medications that may be beneficial for relief users, a 7-day human

laboratory crossover trial of the neuroimmune modulator, ibudilast,

showed that ibudilast improved mood during exposure to alcohol and

stress cues and reduced the mood-altering and stimulant effects of

alcohol among participants with more severe depressive symptoms.62

Our laboratory has an ongoing phase 2 randomized controlled trial

(RCT) testing ibudilast for AUD (NCT03594435).

Reward prediction error

Learning through reinforcement is driven by a process through which

an individual’s behavior changes basedonapairing of decisions/actions

and consequences. This type of learning is thought to be driven by

the discrepancy between the predicted, or expected, outcome and the

received outcome, termed RPE.63,64 RPEs drive behavior toward the

obtainment of reward. If an individual receives the predicted reward,

they keep the prediction unchanged and engage in the same behav-

ior to obtain the reward; however, if the individual does not receive

the predicted reward, they must update their prediction, resulting in

a changed behavior to obtain the reward. There are two types of RPEs:

positive andnegative. Positivepredictionerrors occurwhena reward is

better than predicted, whereas negative prediction errors occur when

the reward isworse than predicted. Substantial evidence indicates that

RPEs are neurally driven by dopaminergic signaling in the midbrain.

Activity inmidbrain dopamine neurons increases during a positive RPE

and decreases during a negative RPE.

As SUDs are often defined by compulsive behavior, or use which

occurs despite the experience of negative consequences, there has

been substantial translational interest in RPE signaling in the field.65

Moreover, addictive drugs have direct and indirect effects on dopamin-

ergic neuronal activity, resulting in an increase in dopamine firing

which may drive learning through an RPE-like mechanism.65 A num-

ber of substances, including cocaine, amphetamine, alcohol, opioids,

and nicotine, all acutely increase dopamine transients in the nucleus

accumbens,66,67 providing support for the theory that RPE-like signal-

ingmay drive addictive behavior.

Human studies of RPE have largely relied on fMRI paradigms to

probe the neural underpinnings of the RPE signal and to examine the

relationship between this signal and decision-making behavior. While

fMRI task specifics differ between studies, the methodology relies

on dynamic changes in response-outcome contingencies to induce

RPEs.68 In a simple version of an RPE task, a participant would be pre-

sentedwith two abstract stimuli. The participantwould select between

the stimuli and receive positive or negative feedback or a reward,

typically a monetary reward. Initially, one stimulus is associated with

more frequent experiences of a positive reward (i.e., 80% chance of

reward), while the other stimulus is paired with a low likelihood of

receiving the positive reward (i.e., 20% chance). After a participant
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learns these reward contingencies, the contingencies would be unpre-

dictably switched, such that the more frequently rewarded stimulus

would become the less frequently rewarded stimulus, resulting in a

negative RPE. A number of studies have used these paradigms to inves-

tigate RPE in individuals with an SUD. One of the first studies in this

area found that chronic nicotine smokers produced a robust RPE signal

in the caudate, a region of the dorsal striatum; however, their behav-

ior was not guided by this neural signal.69 Moreover, when smokers

were given nicotine, neural signals guided behavior; thereby indicating

that during acute abstinence and withdrawal, neural prediction error

signals are intact yet are unable to influence decision-making, mirror-

ing use despite consequences. Similarly, men with AUD displayed an

intact striatal RPE signal in the brain; however, these participants did

show altered functional connectivity between the striatum and the

dorsolateral prefrontal cortex which was associated with impairments

in learning.70 Another study in individuals with AUD used real alco-

hol rewards, rather thanmonetary rewards, and found that individuals

with AUD had increased positive RPE activity in parietal and occipi-

tal regions relative to social drinkers.71 A recent study in adolescents

found that AUD symptomology was negatively correlated with opti-

mal decision-making and striatal and prefrontal cortex RPE signal,72

indicating that these errors in decision-making are present in those

who may not yet have a severe presentation of the disorder. Find-

ings have been mixed in individuals with a cocaine use disorder. Initial

studies found a reduced RPE signal in the striatum and orbitofrontal

cortex,73 and a reduced electroencephalogram (EEG) signal during

RPEs.74 However, another study found that during cocaine depriva-

tion, individuals with a cocaine use disorder had heightened neural

RPE activity in the striatum, which mediated the relationship between

chronicity of substance use and the desire to use cocaine.74 Overall, a

recent meta-analysis of 28 studies of RPE studies in substance-using

populations found that while substance users robustly activate the

striatum and insula during RPEs, they show blunted activation in the

putamen, inferior frontal gyrus, and right insula, relative to controls.75

Differences in findings between and across substance-using popula-

tions may also be attributed to the satiation state of the population,

(i.e., acute abstinence, active use, and acute use76) and by belief or

expectation state.77,78

While understanding the neural mechanisms underlying RPEs and

decision-making in SUDs holds promise for furthering treatment and

medication development, few studies have directly used RPE tasks

or models to evaluate pharmacological or psychosocial treatments.

Instead, results from these studies provide targets for the develop-

mentof learning-basedaddiction treatments.Onemedication thatmay

hold promise to treat decision-making deficits is modafinil. Modafinil

is a mild stimulant and cognitive enhancer which acts on several

neurotransmitter systems, including dopamine. Modafinil has been

investigated as a pharmacotherapy for AUD, methamphetamine use

disorder, and cocaineusedisorder. In individualswithAUD, acute treat-

ment with modafinil improved impulsive decision-making, enhanced

frontostriatal connectivity,79 and increased response inhibition for a

subset of compromised participants.80 In individuals with a metham-

phetamine use disorder, acute treatment with modafinil improved

performance in a learning task and increased activation in frontal

brain regions.81 However, the benefits of chronic treatment with

modafinil for individuals with AUD and methamphetamine use disor-

der remain unknown. In individuals with cocaine use disorder, acute

or short-term treatment of modafinil reduced activation in the VTA,

attenuated self-reported craving,82 and improved working memory.83

However, an RCT of modafinil to treat cocaine use disorder failed to

find improvements in clinical or neuropsychological outcomes and did

not improve abstinence rates,84 suggesting that modafinil may not be

a useful treatment for cocaine use disorder. Frontal-striatal and insula-

striatal pathways have been consistently found to be disrupted in RPE

studies;70,73,75 therefore, targeting these circuits may hold promise to

treat SUDs.

Goal-directed choice, habit, and compulsivity

Over the last few decades, three prominent theories of addiction have

characterizedaddictionaseither excessive goal-directed choicebehav-

iors, maladaptive habitual behaviors, or compulsive behaviors. Goal-

directed behavior is characterized by actions selected based on their

resulting consequences.85 In the context of addiction, the frequency of

goal-directed drug taking is determined by the expectation of reward

value combined with knowledge regarding the voluntary behaviors

necessary to obtain the drug.86,87 While the initial stages of addiction

are characterized by goal-directed drug-taking behaviors, habit the-

ory suggests that the reinforcing effects of the substance strengthen

the association between drug-related stimuli and the drug-seeking

response.88 That is, habit theory suggests that addiction is driven by

the strength of the established stimulus–response relationship inso-

far as the magnitude of the reinforcer is steady.When the reinforcer is

re-experienced having a lower or higher value, the stimulus–response

relationship and the frequency of drug-taking behavior adjust accord-

ingly. As such, habitual drug-taking behavior is flexible and amenable

to change, specifically when the value of the reinforcer shifts. In

contrast to habit theory, compulsion theory posits that the stimulus–

response relationship controlling substance use cannot be modified

by re-experiencing the reinforcer at a different value.89,90 In other

words, because compulsive drug-taking behavior is driven primarily by

the established stimulus–response relationship, drug-taking behavior

is not impacted by a loss of value in the reinforcer.

Goal-directed decision-making requires the knowledge of the asso-

ciation between actions and their consequences, and is “model-based,”

as they rely on a model of the world to determine the best course

of action.91 Conversely, habitual decision-making is more rigid and

uses past reward associations to make current decisions; referred to

as “model-free” as it does not require an explicit model of the world

for decision-making.92 Several tasks have been developed to inves-

tigate goal-directed and habitual decision-making. One of the most

prominent and translationally valid tasks is the two-step decision-

making task developed by Daw and colleagues.93 In this sequential

two-stage task, participants choose between one of two choices in

each stage, leading to a rewarded or nonrewarded outcome of varying
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probabilities. In the first stage, choices are associated with a transition

to a likely (70%) or unlikely (30%) state, where participants make

their final selection and receive feedback. In this task, model-free, or

habitual, decision-making would result in the repetition of a previously

rewarded action, even if the transition was unlikely; whereas model-

based, or goal-directed, decision-making considers the likelihoodof the

transition for future decision-making. This task has been used to inves-

tigate goal-directed and habitual decision-making in rodent models of

addiction,94 individuals with AUD,95,96 and at-risk individuals.97,98

The outcome-devaluation task is also commonly used in labora-

tory animals andhumans todifferentiate betweengoal-directed versus

habit behaviors.99 In the typical research setting, participants learn

that two responses result in two different rewarding outcomes. Of

these outcomes is then devalued by allowing participants to consume

the outcome to satiety or giving the participant instructions that one of

the outcomes is no longer available. After the devaluation, the partici-

pants are given a choice between the two responses under conditions

when the outcomes are not available (i.e., extinction). If responding

to the devalued outcome decreases, it suggests that the response is

goal-directed and dependent on the current value of the outcome. If

responding to the devalued outcome remains steady, this suggests that

the response is habitual and driven by the stimulus–response relation-

ship. While the task has been used to provide support for habit theory

among individualswhousealcohol,100 cocaine,101 andnicotine,102 sev-

eral studies among clinical samples failed to support habit theory (see

Hogarth99 for a thorough critique of the habit literature).

To study compulsive behavior, researchers examine actual or hypo-

thetical drug-taking behaviors after punishment or increasing costs.

For example, demand tasks examine hypothetical consumption behav-

iors at increasing costs.87 The intensity of demand (maximum con-

sumption at a low price) is considered to be a relatively pure index of

drug value unaffected by costs. The breakpoint represents the price

at which drug consumption drops to zero and is thought to be more

sensitive to the impact of price costs on the decision to consume. Com-

pulsion theory would be supported if substance use severity was more

strongly associatedwithbreakpoint than intensity, suggesting that cost

insensitivity is more important than drug value.103 However, meta-

analyses and systematic reviews of this literature have found that

indices of dependence severity correlate more consistently with mea-

sures of intensity than breakpoint, suggesting that dependence ismore

likely to be driven by greater drug value than cost discounting.104–106

Deficits in reversal learning have been interpreted as evidence for

greater cost discounting in addiction. In reversal learning tasks, partici-

pants learn that one response has a higher payoff than an alternative

choice, before these response−reward contingencies are reversed.

Individuals with SUD show deficits in reversal learning despite the

comparable acquisition of the initial contingencies.107–109 One inter-

pretation is that drug users are less sensitive to the punishment of the

incorrect choice, driving the persistence of this choice. Taken together,

these studies provideminimal support for the compulsion theory.

These behavioral tasks have not been widely utilized in the context

of treatments for addiction. However, behavioral and pharmacothera-

pies that reduce drug value may be effective at reducing goal-directed

and habitual behaviors (assuming that re-experiencing the drug at a

lower value will adjust the stimulus–response relationship). Effective

pharmacotherapies that have been shown to decrease drug/alcohol

demand include naltrexone110 and varenicline.111 Once proof of con-

cept studies have established the validity of these paradigms as predic-

tors of medication response, the tasks can be leveraged in medication

development for addiction.

CONCLUSION

SUDs and AUDs are heterogenous conditions, as currently defined in

DSM-5 diagnostic criteria. Because the clinical presentation of alcohol

and SUDs can vary widely from person to person, effective treat-

ment options are limited, and a one size fits all treatment approach

is not feasible. While there have been numerous attempts to clas-

sify meaningful subtypes in addiction, they have not translated into

clinical practice. Thus, there is a critical need for an efficient and clin-

ically useful way to better understand the heterogeneity in alcohol

and SUDs and to leverage that knowledge toward targeted interven-

tions. Recent efforts focused on deep behavioral phenotyping using

NIAAA’s Addictions Neuroclinical Assessment and/or the National

Institute of Drug Abuse’s Phenotypic Battery represent recent exam-

ples of neuroscience-informed constructs aimed at elucidating the

clinical neuroscience of the disorders. The neuroscience-based con-

structs identified using deep phenotyping batteries complement core

constructs in NIMH’s RDoC and NIAAA’s Alcohol Addiction RDoC

and have the potential to extend these research frameworks to the

clinic. Once these domains have been independently validated across

laboratories, their predictive utility in the human laboratory and clin-

ical trials should be put to the test. These efforts would embed

neuroscience-informed phenotyping in medication development and

allow for biomarker development as well. There is a critical need

to apply the phenomenology to improve treatments and to develop

treatment-responsive biomarkers using the underlying biology of

core phenotypes (e.g., neural cue-reactivity, magnetic resonance spec-

troscopy assays of neurometabolites, peripheral inflammation, stress,

and pharmacogenetics). This is an important direction in the implemen-

tation of neuroscience-informed phenotyping. Moreover, there have

been recent calls to amplify the neuroscience-informed assessment at

the level of clinical outcomes.112

This review addressed several neuroscience-related constructs that

are proposed to underly addiction; however, this is not intended to

be an exhaustive list, and it is reasonable to assume some phenotypic

overlap between constructs. Our research group has tested several

of the neuroscience constructs using experimental psychopathol-

ogy approaches.113 There are several opportunities for forward and

reverse translationofneuroscience constructs that areworthmention-

ing. In the allostaticmodel of addiction, recruitingmore severe samples

of patients with AUD may reconcile the differences between the pre-

clinical and human literature. Additionally, reverse translating reward

and relief drinking phenotypes in animal models will improve our

understanding of the neurodysfunction in addiction. The latter point
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would be especially useful given the prominent clinical research that

reward and relief phenotypes differ in their responses to pharmaco-

logical treatments. Additional examples of translational opportunities

are provided elsewhere.114 The central recommendations from the

literature reviewed herein include the following: (1) implementing

neuroscience-informed phenotyping as predictors and outcomes of

addiction treatment in contemporary (as compared to post-hoc) sam-

ples; (2) testing the clinical utility of the neuroscientific constructs;

(3) leveraging clinical neuroscience constructs toward biomarker

development; (4) refining biomarkers and behavioral predictors with

potential for large-scale dissemination and implementation in clini-

cal care settings; and (5) maintaining a healthy level of skepticism

regarding the “added benefit” of neuroscience-informed phenotypes

and biomarkers beyondwhat is currently accessible to clinicians.

In summary, neuroscience constructs hold promise for advancing

precision medicine for addiction. The field is experiencing a foray into

their potential for informing treatment response, with most of the

research focused on the reward/relief drinking phenotypes. The deep

behavioral phenotyping approaches serve as a starting point to under-

stand heterogeneity in addiction. Once the batteries are fine-tuned

and validated, it is purported that they can be leveraged to develop

novel interventions that target specific neuroscience-informedmecha-

nisms that underlie addiction.Nevertheless, the proof is in the pudding.

As such, we contend that a thoughtful translational neuroscience

approach should consistently aim for larger effect sizes for addiction

treatments, which would result in higher uptake of evidence-based

practices and overall population-level improvements in healthcare

outcomes for addiction.
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